Uso de Python para detecção de fake news sobre a covid-19: desafios e possibilidades
DOI:
https://doi.org/10.29397/reciis.v16i2.3253Palavras-chave:
Fake news, Inteligência artificial, Covid-19, Python, Desinformação.Resumo
Este trabalho tem como objetivo relatar estratégias para coleta de um conjunto de dados em português para treinamento de modelos de Inteligência Artificial com vistas a identificar de forma automática fake news sobre covid-19 disseminadas durante a pandemia, a partir de código Python. Analisamos um método de detecção de fake news baseado em uma Rede Neural Recorrente e de aprendizagem supervisionada. Selecionamos um corpus com 7,2 mil textos coletados em websites e agências de notícias por Monteiro et al. (2018) com cada um previamente catalogado como verdadeiro ou falso como conjunto de dados de treino e validação. O modelo foi usado para detecção de fake news sobre covid-19 em um conjunto de notícias coletadas e classificadas pelos autores deste trabalho. O índice de acerto foi de 70%, ou seja, essa foi a taxa de sucesso da detecção dos itens catalogados.
Referências
ALVES, Marco Antônio Sousa; MACIEL, Emanuella Ribeiro Halfeld. O fenômeno das fake news: definição, combate e contexto. Internet & Sociedade, Rio de Janeiro, v. 1, n. 1, p. 144-171, 2020. Disponível em: https://revista.internetlab.org.br/o-fenomeno-das-fake-news-definicao-combate-e-contexto/. Acesso em: 15 nov. 2021.
AMPER ENERGIA HUMANA. We Are Social e HootSuite: Digital 2021 [resumo e relatório completo]. In: AMPER ENERGIA HUMANA. Amper: marketing e comunicação. São Paulo, 03 maio 2022. Disponível em:
https://www.amper.ag/post/we-are-social-e-hootsuite-digital-2021-resumo-e-relatório-completo. Acesso em: 16 maio 2021.
AVAAZ. IBOPE: 1 em cada 4 brasileiros pode não se vacinar contra a covid-19. [S. l.]: Avaaz, 07 set. 2020. Disponível em: https://secure.avaaz.org/campaign/po/brasileiros_nao_vacinar_covid/. Acesso em: 14 nov. 2021.
AVAAZ. O Brasil está sofrendo uma infodemia de covid-19. [S. l.]: Avaaz, 04 maio 2020. Disponível em: https://avaazimages.avaaz.org/brasil_infodemia_coronavirus.pdf. Acesso em: 25 maio 2022.
BOSELLI, Marco Aurélio. Reciis. Uberlândia, 25 maio 2022. Código Python. Disponível em: https://github.com/maboselli/reciis. Acesso em: 14 jun. 2022.
BRUCK, Mozahir Salomão. O jornalismo diante de novos cenários sociais: a imprensa e o surgimento da aids e do crack. São Paulo: Intermeios, 2015.
CHENG, Raymond. Text preprocessing with NLTK. In: TDS Editors; HUBERMAN, Ben; Kindig Caitlin (ed.). Towards Data Science, [s. l.], 29 jun. 2020. Disponível em: https://towardsdatascience.com/nlp-preprocessingwith-nltk-3c04ee00edc0. Acesso em: 28 nov. 2021.
CHOLLET, François. Deep learning with Python. New York: Manning Publications, 2018.
COLLINS COBUILD. Fake news. In: COLLINS. Collins Dictionary. Nova York: Harper Collins, c2022. Disponível em: https://www.collinsdictionary.com/dictionary/english/fake-news. Acesso em: 01 fev. 2022.
FERREIRA, Fernanda Vasques. O papel do factual nos processos de agendamento e de enquadramento no telejornalismo. 2018. 438 f., il. Tese (Doutorado em Comunicação) – Universidade de Brasília, Brasília, 2018. Disponível em: https://repositorio.unb.br/handle/10482/33073. Acesso em: 16 maio 2021.
GOMES, Wilson. O que são fake news?. Brasília, DF: INCT, 2020. 1 vídeo (38 min). Publicado pelo canal INCT em Democracia Digital. Disponível em: https://www.youtube.com/watch?v=8tvJ4cMt YXY]. Acesso em: 16 maio 2021.
GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep learning. Massachusetts: The MIT Press, Cambridge, 2016.
HASSON, Erez. Bad bot report 2021: the pandemic of the internet. In: IMPERVA, 13 abr. 2021. Disponível em:
https://www.imperva.com/blog/bad-bot-report-2021-the-pandemic-of-the-internet/. Acesso em: 23 jan. 2022.
KERTYSOVA, Katarina. Artificial Intelligence and Disinformation: how AI changes the way disinformation is produced, disseminated, and can be countered. Security and Human Rights, Leiden, v. 29, p. 55-81, 2018. DOI: http://dx.doi.org/10.1163/18750230-02901005. Disponível em: https://brill.com/view/journals/shrs/29/1-4/article-p55_55.xml. Acesso em: 14 jun. 2022.
KHAN, Junaed Younus et al. A benchmark study on Machine Learning Models for online fake news detection. arXiv, Ithaca, 12 maio 2019. Disponível em: https://arxiv.org/abs/1905.04749. Acesso em: 06 jun. 2022.
MAYERS, Gabriel. Detecting fake news using Machine Learning. In: TEAM AV (ed.). Analytics Vidhya, [s. l.], 19 jun. 2020. Disponível em: https://medium.com/analytics-vidhya/detecting-fake-news-using-machinelearning-95efefab08e4. Acesso em: 07 mar. 2022.
MELLO, Patrícia Campos. A máquina do ódio: notas de uma repórter sobre fake news e violência digital. São Paulo: Companhia das Letras, 2020.
MONTEIRO, Rafael A. et al. Contributions to the study of fake news in Portuguese: new corpus and Automatic Detection Results. In: COMPUTATIONAL FOR PORTUGUESE LANGUAGE, 13., 24-26 set. 2018, Canela. Proceedings […]. Cham: Springer, 2018. p. 324-334. (Lecture Notes in Computer Science, v. 11122). DOI:
http://dx.doi.org/10.1007/978-3-319-99722-3_33. Disponível em: https://github.com/roneysco/Fake.br-Corpus. Acesso em: 27 fev. 2022.
NIELSEN, Michael A. Neural networks and deep learning. [S. l.], Determination Press, 2015. Disponível em: http://neuralnetworksanddeeplearning.com/index.html. Acesso em: 27 fev. 2022.
PENNAFORT, Roberta. É #FAKE que foto mostre caixão enterrado vazio para inflar dados de mortos por coronavírus em Manaus. G1, [s. l.], 30 abr. 2020. Fato ou Fake. Disponível em: https://g1.globo.com/fatoou-fake/coronavirus/noticia/2020/04/30/e-fake-que-foto-mostre-caixao-enterrado-vazio-para-inflar-dados-demortos-por-coronavirus-em-manaus.ghtml. Acesso em: 29 maio 2022.
PENNYCOOK, Gordon; RAND, David G. Lazy, not biased: susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition, [s. l.], v. 188, p. 39-50, 2019. DOI:
https://doi.org/10.1016/j.cognition.2018.06.011. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S001002771830163X. Acesso em: 16 maio 2021.
PEREIRA, Denilson Alves. A survey of sentiment analysis in the portuguese language. Artificial Intelligence Review, [s. l.], v. 54, n. 2, p. 1087-1115, 2020. DOI: https://doi.org/10.1007/s10462-020-09870-1. Disponível em: https://link.springer.com/article/10.1007/s10462-020-09870-1. Acesso em: 25 maio 2022.
RECUERO, Raquel et al. Desinformação, mídia social e covid-19 no Brasil: relatório, resultados e estratégias de combate. Pelotas: MIDIARS – Grupo de Pesquisa em Mídia Discurso e Análise de
Redes Sociais, 2021. Relatório de pesquisa. Disponível em: https://wp.ufpel.edu.br/midiars/files/2021/05/Desinformac%CC%A7a%CC%83o-covid-midiars-2021-1.pdf. Acesso em: 14 jun. 2022.
RECUERO, Raquel; SOARES, Felipe Bonow; GRUZD, Anatoliy. Hyperpartisanship, Disinformation and Political Conversations on Twitter: The Brazilian Presidential Election of 2018. In: INTERNATIONAL AAAI CONFERENCE ON WEB AND SOCIAL MEDIA,14., 2020, Atlanta. Proceedings […]. Atlanta: AAAI Digital
Library, 2020. Disponível em: https://ojs.aaai.org//index.php/ICWSM/article/view/7324. Acesso em: 14 jun. 2022.
RICHARDSON, Leonard. Beautiful Soup Documentation. [S. l.]: Leonard Richardson, c2020. Disponível em: https://www.crummy.com/software/BeautifulSoup/bs4/doc/. Acesso em: 06 jun. 2022.
SHARMA, Sagar. Activation functions in neural networks: Sigmoid, tanh, Softmax, ReLU, Leaky ReLU explained!!! In: TDS Editors; HUBERMAN, Ben; Kindig Caitlin (ed.). Towards Data Science, [s. l.], 6 set. 2017. Disponível em: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6. Acesso
em: 06 jun. 2022.
SILVA, Igor Fediczko; ARAÚJO, Rafael de Paula Aguiar. Campanhas políticas em tempos de hiperpolítica: um ensaio sobre Peter Sloterdijk e a campanha de 2018. Ponto e Vírgula, São Paulo, n. 26, p. 138-145, 2019. Disponível em: https://revistas.pucsp.br/index.php/pontoevirgula/article/view/51519/34074. Acesso em: 28 set. 2021.
SLOTERDIJK, Peter. No mesmo barco: ensaio sobre a hiperpolítica. São Paulo: Estação Liberdade, 1999.
SOUSA JUNIOR, João Henriques de; PETROLL, Martin de La Martinière; ROCHA, Rudimar Antunes da. Fake news e o comportamento on-line dos eleitores nas redes sociais durante a campanha presidencial brasileira de 2018. In: SEMINÁRIOS EM ADMINISTRAÇÃO, 22., 6-8 nov, São Paulo. Anais [...], São Paulo: SemeAd, 2019. Disponível em: https://login.semead.com.br/22semead/anais/resumo.php?cod_trabalho=501. Acesso em: 20 dez. 2021.
SOUZA, Frederico Dias; SOUZA FILHO, João Batista de Oliveira. Sentiment analysis on Brazilian Portuguese user reviews. arXiv, Ithaca, 10 dez. 2021. Disponível em: https://arxiv.org/pdf/2112.05459.pdf. Acesso em: 20 dez. 2021.
VARÃO, Rafiza. Há alguma novidade na ideia de fake news? In: SOS IMPRENSA. Blog SOS Imprensa. Brasília, DF, 18 out. 2017. Disponível em: https://sosimprensa.wordpress.com/2017/10/18/ha-algumanovidade-na-ideia-de-fake-news/. Acesso em: 03 jan. 2022.
VIRAHONDA, Sergio. An easy tutorial about sentiment analysis with deep learning and Keras. In: TDS Editors; HUBERMAN, Ben; Kindig Caitlin (ed.). Towards Data Science, [s. l.], 08 out. 2020. Disponível em: https://towardsdatascience.com/an-easy-tutorial-about-sentiment-analysis-with-deep-learning-and-keras-2bf52b9cba91. Acesso em: 03 jan. 2022.
VOLKOFF, Vladimir. Pequena história da desinformação: do cavalo de Troia à internet. Lisboa: Editorial Notícias, 2000.
WARDLE, Claire. Fake News. It’s complicated. In: FIRST DRAFT. First Draft Footnotes, [s. l.], 16 fev. 2017. Disponível em: https://medium.com/1st-draft/fake-news-its-complicated-d0f773766c79. Acesso em: 14 maio 2021.
WÓJCIK, Rafał. Unsupervised sentiment analysis. In: TDS Editors; HUBERMAN, Ben; Kindig Caitlin (ed.). Towards Data Science, [s. l.], 26 nov. 2019. Disponível em: https://towardsdatascience.com/unsupervised-sentiment-analysis-a38bf1906483. Acesso em: 25 de maio 2022.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos de autor: O autor retém, sem restrições dos direitos sobre sua obra.
Direitos de reutilização: A Reciis adota a Licença Creative Commons, CC BY-NC atribuição não comercial conforme a Política de Acesso Aberto ao Conhecimento da Fundação Oswaldo Cruz. Com essa licença é permitido acessar, baixar (download), copiar, imprimir, compartilhar, reutilizar e distribuir os artigos, desde que para uso não comercial e com a citação da fonte, conferindo os devidos créditos de autoria e menção à Reciis. Nesses casos, nenhuma permissão é necessária por parte dos autores ou dos editores.
Direitos de depósito dos autores/autoarquivamento: Os autores são estimulados a realizarem o depósito em repositórios institucionais da versão publicada com o link do seu artigo na Reciis.