Ellipsoid clustering machine: a front line to aid in disease diagnosis

Authors

  • Paulo Costa Carvalho Universidade Federal do Rio de Janeiro, Programa de Engenharia de Sistemas e Computação, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
  • Juliana de Saldanha Gama Fischer Fundação Oswaldo Cruz, Instituto Carlos Chagas, Laboratório de Proteômica e Engenharia de Proteínas, Centro Industrial de Curitiba, Curitiba, PR, Brasil
  • Valmir Carneiro Barbosa Universidade Federal do Rio de Janeiro, Programa de Engenharia de Sistemas e Computação, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
  • Gilberto Barbosa Domont Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
  • Wim Maurits Sylvain Degrave Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
  • Maria da Gloria da Costa Carvalho Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Urca, Rio de Janeiro, RJ, Brasil

DOI:

https://doi.org/10.3395/reciis.v1i2.926

Keywords:

Mass spectrometry, machine learning, pattern recognition, clustering, Hodgkin’s disease, proteomics

Abstract

This study presents a new machine learning strategy to address the disease diagnosis classification problem that comprises an unknown number of disease classes. This is exemplified by a software called Ellipsoid Clustering Machine (ECM) that identifies conserved regions in mass spectrometry proteomic profiles obtained from control subjects and uses these to estimate classification boundaries based on sample variance. The software can also be used for visual inspection of data reproducibility. ECM was evaluated using mass spectrometry protein profiles obtained from serum of Hodgkin’s disease patients (HD) and control subjects. According to the leave-one-out cross validation, ECM completely separated both groups based only on the information derived from four selected mass spectral peaks. Classification details and a 3D graphical model showing the separation between the control subject cluster and HD patients is also presented. The software is available on the project website together with online interactive models of the dataset and an animation demonstrating the method.

Published

2007-12-31

How to Cite

Carvalho, P. C., Fischer, J. de S. G., Barbosa, V. C., Domont, G. B., Degrave, W. M. S., & Carvalho, M. da G. da C. (2007). Ellipsoid clustering machine: a front line to aid in disease diagnosis. Revista Eletrônica De Comunicação, Informação & Inovação Em Saúde, 1(2). https://doi.org/10.3395/reciis.v1i2.926