Grammatical inference applied to linguistic modeling of biological regulation networks

Authors

  • Elias Bareinboim Universidade Federal do Rio de Janeiro, Programa de Engenharia de Sistemas e Computação, Laboratório de Bioinformática, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
  • Ana Tereza Ribeiro Vasconcelos Universidade Federal do Rio de Janeiro, Laboratório de Bioinformática, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
  • João Carlos Pereira da Silva Universidade Federal do Rio de Janeiro, Instituto de Matemática, Departamento de Ciência da Computação, Ilha do Fundão, Rio de Janeiro, RJ, Brasil

DOI:

https://doi.org/10.3395/reciis.v1i2.931

Keywords:

Gene regulation, linguistic modeling, context sensitive language, augmented regular expression, grammatical inference

Abstract

We present a methodology based on grammatical inference algorithms applied to the linguistic modeling of biological regulation networks. The linguistic approach to the problem of regulation networks was proposed by COLLADO-VIDES, who proved and formalized the need for use of context sensitive languages to represent such networks. The learning of context sensitive languages is a difficult task, our proposed methodology describes this class from language with a simpler nature that can be learned by already consolidated grammars inference algorithms. In addition to the proposed methodology, we suggest promising directions for this research.

Published

2007-12-31

How to Cite

Bareinboim, E., Vasconcelos, A. T. R., & da Silva, J. C. P. (2007). Grammatical inference applied to linguistic modeling of biological regulation networks. Revista Eletrônica De Comunicação, Informação & Inovação Em Saúde, 1(2). https://doi.org/10.3395/reciis.v1i2.931